
db

db ii

COLLABORATORS

TITLE :

db

ACTION NAME DATE SIGNATURE

WRITTEN BY August 24, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

db iii

Contents

1 db 1

1.1 db - A small and fast database program . 1

1.2 disclaimer . 2

1.3 preface . 2

1.4 introduction . 4

1.5 features . 4

1.6 future . 5

1.7 system . 5

1.8 installing . 6

1.9 settings . 6

1.10 ref . 8

1.11 window . 8

1.12 view . 9

1.13 gadgets . 9

1.14 keys . 10

1.15 menus . 10

1.16 arexx . 16

1.17 rff . 17

1.18 identifiers . 19

1.19 speed . 22

1.20 history . 22

db 1 / 27

Chapter 1

db

1.1 db - A small and fast database program

Table of contents
=================

Disclaimer

db reference manual

Preface

The window

Introduction

Views

Features

The gadgets

Future plans

The keys

System requirements

The menus

Installing and starting

ARexx

Settings
Technical info

The RFF file format

RFF identifier list

db 2 / 27

A note about SpeedRender

History of changes

1.2 disclaimer

Disclaimer

db has been tested and found stable in everyday use.
However the author is not responsible for any loss of data, damages to
software or hardware that may result directly or indirectly from
the use of this program.

1.3 preface

Preface

This program is postcardware, ie like freeware, this means that you
can copy it freely as long as you don’t ask any more money for it than a
nominal fee for copying. If you like the program, please send a postcard
to the author (address below).

To you who have sent a postcard already:
Thanks, your response has encouraged me to continue improving this product.

If you want to distribute this program then you must supply the whole archive
(packed in .lha or unpacked). You are free to supply a copy of db on coverdisk
magazines. If you do, please just send me a copy of that magazine for my
collections :-)

Special permission is hereby granted to include db in
Public-Domain collections such as Fred Fish’s Amiga Library.

HOW TO GET THE LATEST VERSION OF db

The fastest way to get the most recent release of db is to
download it from an AmiNet ftp site. For example: ftp.luth.se (biz/dbase)

If you’ve made a nice ARexx script that enhances db, or maybe designed a
practical database layout, do share it so other people can have use of it.
Send your work to me so I can include it in the archive. I especially look
for translations of the "Addresses" example file.

If you have suggestions or remarks about this program, or if
you find any bugs, please let me know. I really like response from users.

db 3 / 27

Write to the following address:

David Ekholm
Mantalsvägen 33
s-175 43 Järfälla
Sweden

You who prefer the faster way may use:

phone: int +46 8-580 15668
email: david-ek@dsv.su.se

Thanks to all of you who’ve given me suggestions and found bugs.

Icon artwork by Mikael Östergren.

Thanks to Jan van den Baard for GadToolsBox (used in v1.0 & v1.1)

Additional ARexx scripts by Richard Ludwig
email: md93-ril@nada.kth.se

Thanks to Andrew Leppard for the short (though hardwarebanging :-()
asm code for tonedialing using the loudspeaker.

email: 9405571x@lux.levels.unisa.edu.au

Thanks also goes to the following persons for translations:

German translation by Uwe Roehm
email: roehm@forwiss.uni-passau.de

Polish translation by Michal Letowski
email: letowski@ci-1.ci.pwr.wroc.pl

Dutch translation by Edmund Vermeulen
email: edmundv@grafix.xs4all.nl

Danish translation by Christian Hoj
email: cbh@vision.auc.dk

Swedish translation by David Ekholm (oops myself :-))
email: david-ek@dsv.su.se

Italian translation by Michele Rotellini (50%)
(no email)

and Piergiorgio Ghezzo (50%)
email: pghezzo@oink.dsi.unive.it

Finnish translation by Jukka Kauppinen
email: Grendel@Freenet.hut.fi

French translation by Goncalves A. Georges
email: melkor@ramses.fdn.org

Norwegian translation by Lars Magnus Nordeide

db 4 / 27

email: larsmn@oslonett.no

1.4 introduction

An Introduction to db

db is a small and fast database program that I wrote after having tested
numerous other PD database programs and always found something lacking or
irritating me. They might have dozzens of features not found in db, but
they lacked font sensitivity and a standard GUI look and OS 3.0 behaviour.

My main need was to keep record on addresses and telephone numbers of friends
and companies. Before v2.0 db was fixed to be just an address and telephone
database, but that has changed. db was designed with user definable layout in
mind from start. Currently you have to use a file editor to specify the
database fields and layout as there is no GUI for that.
(See

The RFF file format
)

Anyway that’s a one time job, then you just USE the database and have fun.

Complete GUI support will probably only be included in a ShareWare product.
Please Read this! .

When you use db you will notice that the user interface has been kept as
compact as possible (few gadgets, menus and windows). Still the functionality
in for example, searching and sorting is high. This is intentional.
I prefer few buttons with high functionality than the opposite. The ASL
requester is in my opinion an example of good design. It may look simple,
but hides features like automatic drawer creation and filename completion.
I hope you spend enough time with db to discover its hidden features.

1.5 features

Feature List

A partial list of db’s features include:

o Dynamic memory handling. Number of records and fields only limited by
free memory.

o GadTool based. (Use fields of string, checkbox and cycle type)
o Mouse and keyboard driven.
o User definable fields and layout.
o Multiple views of the same database.
o Commodore’s Clipboard for flexible interaction with other programs.
o AppWindow -just drag and drop database icons on db to load.
o Online MenuHelp -Press HELP key when selecting a menu item.
o Font sensitive.

db 5 / 27

o ASL requesters for flexible loads and saves.
o Localized.
o ARexx support.
o Dial numbers using a modem or loudspeaker.
o WB and Shell usage with Commodore’s template parsing.
o Fast and flexible find function using AmigaDOS patterns.
o Listview browser.
o Filter function.
o Fast and flexible sort function. Multiple sort orders can be specified.
o ’Export View’ and two standard ASCII export features.
o Automatic ASCII import (tab-separated ASCII).

1.6 future

Future plans

The following are plans for the future. The main changes will probably only
be included in a ShareWare product. Please Read this! .

o GUI for designing your own database layout.

o Improved ARexx support.

o Field and record merge.

o Relations between databases.

1.7 system

System Requirements & Compatibility

db will only run on AmigaOS 2.04 or higher.
db needs at least AmigaOS 2.1 to use localized languages.
db needs to have the whole database in memory to run which limits the
number of records to what the memory allows. However modern computers
like the Amiga with, say 2 MB of memory, will typically allow databases
with more than 5000 records -enough for most uses.

The idea is sort of: "one should not drive around with a big trailer
in the middle of a city". db is a small and fast citycar.

db allocates exactly the amount of memory needed for each field. You just
specify a maximum number of characters if you want a limit for some reason
(zipcodes...). (If you don’t specify a limit then there is a default limit of
200 characters)
This is a memory efficient model.

db has been tested with AmigaOS 3.0 and is written in SAS C 6.55.

db 6 / 27

1.8 installing

Installing and starting db

db runs from both Workbench and Shell. See
Settings
for parameter list.

Installing db is simple - just drag the db program icon and the Catalogs
drawer to the desired destination drawer. (If you omit the Catalogs drawer,
you will only get English text.)

To start db from Shell, just enter db followed by an optional parameter list.
Enter db ? from Shell to see the parameters.

To start db manually from the Workbench simply double-click on its
program icon.

You can also start db by clicking on a db project icon so that that project
gets loaded automatically.

Another way to load a project is to simply drag that project over db’s window
and release the mouse.

1.9 settings

Settings

db can be set up either from Shell or from its ToolTypes. The following
parameters apply to both environments:

DEVICE=<serial device name> -Device used for dialing using a modem.
The default is serial.device, but
users of internal modems might use
modem0.device or something else.

UNIT=<device unit number> -For multiple serial units. 0 is default.

TONEDIAL -Dial numbers using the loudspeaker instead.

TONEDIALSPEED=<number 1-10> -Set the speed of the tonedialing. Lower
values give higher speed.

CCITT5 -Use CCITT5 frequencies when dialing instead
of DTMF frequencies.

DIALPREFIX=<prefix string> -String to add before phonenumbers when
dialing. Default is ATDT (Hayes modems)

DIALPOSTFIX=<postfix string> -As the above, but this will be added after
the phonenumbers (+ a return code)

db 7 / 27

The default ;H returns the modem to command
state and hangs up immediately. (you take
over from there)

AREACODE=<areacode string> -This will strip the <areacode string> from
the beginning of phone numbers beginning with
<areacode string> in order not to confuse
some telephone systems.

Let’s say our area code is (08).
Entering that code into AREACODE will make
numbers like (08)123456 to be dialed as
123456.

PUBSCREEN -Opens db on the specified public screen or
the Workbench screen if not found.

FONTNAME -You can specify a custom font to use other
than the default which is the screen font.
The name has to be typed with the .font
addition, for example FONTNAME=times.font

FONTSIZE -Size of font, see above. If the font makes
the window to big to open, db will try the
screenfont and at last topaz 8. These two
ToolTypes have to be specified together.

NOICONS -This will suppress iconsaving for projects.

NOSPEEDRENDER -Turns off
SpeedRender

.

NORETURNSTEP -Turns off the ability to use the return
key or enter key to step between fields.
Holding down Alt when pressing return or
enter disables returnstepping temporarily.

NOSERIAL -This ToolType has currently no function.

HORIZBAR -Places the record dragbar horizontally in
the bottom of the window instead of to the
right. Also allows the left and right keys
to be used to move between records.

NOBORDER -Display string fields without the fancy
v37 borders. Use this if you think there
is to much GUI in your database.
Note: this option uses

SpeedRender
.

HIGHLABEL -Display fieldnames in highlighted
colour instead. This option goes well
together with the NOBORDER option.

ESCQUIT -Enables the Escape key to be used to quit

db 8 / 27

db (in normal mode).

MAKEBACKUP -Enables saving of a backup file of the
database everytime the database is saved.
(.bak added to the filename)
I strongly recommend that you use this.

LOCALESORT -Makes db use the locale.library string
compare function when sorting making db
handle language specific characters
correctly. However, due to a bug in the
Swedish language support in the OS, Swedes
should NOT use this ToolType. LOCALESORT
can also improve sorting speed a lot.

1.10 ref

db Reference Manual
===================

This section contains information most people figure out themselves by
testing a program. db has on-line help that should be sufficient for most
people.

I recommend that you experiment with the program first and turn to this
section if there is a problem of some kind.

1.11 window

The window

The db window usually opens on the default public screen, normally the
Workbench screen (Unless you use the PUBSCREEN ToolType).
It uses the screen font (or your specified font) and all text and gadgets
are sized accordingly.
db has a zoom gadget next to the depth gadget to enable the window
to be minimized if db isn’t needed for a while.

db will display one record at a time that we call the current record.
However you can see one selected field from many records at a time using
the "Browser" which is a window with a listview inside (v2.7).
db can work in one of three modes:

o Normal mode. Enter records and look at the database here.

o Find mode. Information entered in the fields will serve as a search
pattern. AmigaDOS patterns are accepted. Press enter to start search
or press escape to cancel find mode. (In order for Enter to work, you
will have to leave any activated string field first)

db 9 / 27

o Sort mode. Numbers entered in the fields will serve as a sort-order
description. Press enter to start sort or press escape to cancel
sort mode.(In order for Enter to work, you will have to leave any
activated string field first)

The window titlebar can look like this:
Adresses/Main view 16/43

It indicates a number of things namely:
Filename/Viewname Current record number/Number of records.

1.12 view

Views

The visual information in the database can be divided into many views.
This enables the user to view the database in different ways.

One view may only contain address specs, while another view contains special
information on the person’s study-results for example.
This is also useful when doing exports for label-printing if a label-looking
view is designed.

Another reason to use views is to enable db to have more fields than is
possible to show on the screen at one time.

If you don’t understand the idea, try some of the example programs and
try playing with the menuitems under the View menu and see what happens.
(Only some of the examples have multiple Views)

1.13 gadgets

Gadget Operations

db’s window is made up of two kinds of gadgets, program gadgets and
field gadgets. Currently There are only three program gadgets -the record
dragbar with it’s two arrow keys. These gadgets has two uses, one is to
navigate in the database in a quick way. The second is to give a visual feel
of where the user is in the database and how big the database is.
This is illustrated by the size and position of the dragbar knob.

The field gadgets can be of three types: string, checkbox and cycle type.
They can be activated in one of three ways:

o Clicking the mouse over the desired field.

o Pressing the key that corresponds to the underlined character in the
field name. (Will toggle checkbox fields and cycle cycle-fields)

db 10 / 27

o Pressing tab or shift-tab. (string fields only)

See
Key operations
for more information.

Use the HELP key or right mouse button to deactivate a string field.
Checkbox fields store their state as 0’s and 1’s in in the database.
Cycle fields store the active choice as numbers from 0 and up. (In ASCII
representation as always in db)

By using string fields to enter information makes it possible to enter more
information than is visible in the gadget. If so, the gadget will start
to scroll the entered text. Pressing shift-left or shift-right will
move the cursor to the first and last character in a field as usual.
Amiga-X will also clear the active gadget and Amiga-Q will undo what you’ve
typed. By using PD programs like NewEdit makes it also possible to copy and
paste information between fields, not just records as supported by db.

You don’t have to click outside a string gadget or press enter to be able to
use the other keys to navigate in the database. When finished entering data,
there is no need to press enter to leave a string gadget either. Any
information entered will be recorded in the database.

1.14 keys

Key Operations

The following keys can be used to control db (apart from the window shortcuts):
This is the action performed in normal mode:

Up - Previous record.
Down - Next record.
Shift Up - First record.
Shift Down - Last record.
Return - Forward search.
Shift Return - Backward search.

In find and sort mode these are the active keys:

ESC - Leave find or sort mode
Return/Enter - Start search or sort.

To move between fields you use Tab and Shift-tab as is the standard today.
You may also use the return or enter key if the NORETURNSTEP ToolType is not
specified. If you don’t use NORETURNSTEP you have to deselect any string field
to be able to use the return key to search in the database.

1.15 menus

db 11 / 27

Menu Operations

Note that much of this information can be found online in db by selecting
a menuitem and pressing HELP.

Project/New:

Clears the database from all records, but keeps all fields.
Will ask before clearing the old database if it has unsaved changes.

Project/Open...:

Brings up a standard ASL file-requester to allow the user to select
a new database file to load. Will warn the user before loading ontop of an
unsaved database. db databases can also be loaded by draging an icon over
a db window. db accepts plain tab-separated ASCII files and files in the

RFF file format
.

Project/Save:

Saves the current database under a known name using db’s
RFF file format
If no name has been specified, db will automatically call Project/ ←↩

Save as...

Project/Save as...:

Performs the same behavior as Save item described above except
brings up a standard ASL file-requester to let the user select a file and
path name for the database. The user will be warned if he types the same
name as an existing file. Otherwise a new file and icon will be created and
the Workbench will be informed of the optional icon creation.

Project/Output/View...:

db has no internal label-layout generator. The idea is that other programs,
better at layout, like DTP programs should handle that. Instead db outputs
an ASCII file formatted as the current

View
which may look like

a label or something else suitable for importing in other programs. A label
template for PageStream is included. This will bring up a standard ASL
requester for the View file.
The user will be asked if all records should be exported or only those matched
by the ’Find record’ function.

Project/Output/View with names...:

db 12 / 27

This menuitem works like ’Output view’ above but adds fieldnames from the
current view before each field. This is good for general printouts from the
database.

Project/Output/Tab-separated ASCII...:

This item will bring up a standard ASL requester for saving a plain ASCII file,
ie a tab separated textfile with one record per line and the fieldnames in the
first line of the file. This is suitable for exporting db databases to programs
like Excel for list printouts.
The user will be asked if all records should be exported or only those matched
by the ’Find record’ function.

Project/Output/Comma-separated ASCII...:

This item will bring up a standard ASL requester for saving comma-separated
ASCII file, ie like the format above, but with commas as separators and
quotes "" around the names. This is suitable for exporting db databases to
programs like ProWrite for mailmerge printouts.
The user will be asked if all records should be exported or only those matched
by the ’Find record’ function.

Project/About...:

Brings up a requester showing information about the author, hidden features,
revision number and ARexx port name. Click Ok to make the requester disappear.

Project/Quit:

First prompts the user with a requester if there is unsaved data and if the
action is confirmed removes any currently installed database and exits
the program.

Edit/Cut:

db uses Commodore’s standard Clipboard to allow copying of information
between db and other programs (wordprocessors, DTP...).
db writes to two clipboards, Unit 0 (the default clipboard) and Unit 1.
Reads are only made from Unit 1. This is what is written:

Unit 0: The current record with fields formatted like the current view.

Unit 1: The whole record in a record format like this:
fieldname <TAB> contents <NL>
fieldname <TAB> contents <NL>
...

Cut will copy the contents of the current record to the clipboard and
delete the current record.

Edit/Copy:

db 13 / 27

Just copies the current record to the clipboard. See Edit/Cut for more
information.

Edit/Paste:

Will add a new record and paste the contents of the clipboard that matches
the fields in this database into the new record. Edit/Paste will paste from
Clipboard unit 1 which has a format as described in Edit/Cut.

If there is no data in the clipboard that suits the fields, nothing will
happen at all.

Using the public clipboard not only allows copying and pasting between
db and wordprocessors. Many instances of db can move records between them
also.

Edit/Add:

Adds a new empty record to the database. The new record will be added
after the current record.

Edit/Kill:

The current record is deleted in normal mode.
In find and sort mode the fields are cleared instead.
You cannot kill a record if it is the only one.

View menu:

Use these menuitems to switch between different
Views
of the database

(if there are more than one of course).
See Views section for more information.

Action/Find...

Will turn db into find mode. The current window will now indicate the desired
search pattern.

* Enter a search pattern into one or many of the fields.

* Press Enter/Return to leave the fields

* At the 2:nd press of the Enter/Return key db will then search the database
starting from the top and stop at the first occurence that has a match.

Usually only a few letters will do as a search pattern. For example:

’da’ will match both ’David’ and ’Daniel’.

You may also use AmigaDOS patterns. For example:

db 14 / 27

’#?d’ or ’*d’ will match fields ending with a d.
(david|micke)’ will match both ’David’ and ’Micke’.

Pressing the escape key or clicking the window closegadget returns db to
normal mode.

Note: The export function uses this function to filter records

Note! Fields of checkbox and cycle type are ignored in find and sort modes.
To be able to use all fields, user must make and switch to a view which only
contains stringgadgets.

A "fast find" function has been added to the space key. Upon pressing space,
db will enter find mode and clear all fields automatically. (v2.5)

Action/Find next

This menu item is only supplied for compatibility with other programs.
It will continue searching for other matching records. It is better to
use enter/return instead and shift-enter/return to search backwards.

Action/Sort...

Will turn db into sort mode. The current record will now indicate the desired
sort order. Just enter numbers in the fields. Anything else than numbers is
ignored.
For example, entering a ’1’ in the Zip field and a ’2’ in the Name field
indicates that you want the database sorted on zipcodes in the first hand
and sorted on names in the second hand.

db will sort the Swedish ÅÄÖ characters correctly unlike most other programs.
Pressing the escape key or clicking the window closegadget returns db to
normal mode.

Note! Fields of checkbox and cycle type are ignored in find and sort modes.
To be able to use all fields, user must make and switch to a view which only
contains stringgadgets.

Action/Dial number

db will dial a phonenumber using your modem or loudspeaker. See
Settings

for how to configure db to your modem and serial device settings ←↩
etc.

To dial a number using the modem, do the following:
1. Select the gadget containing a valid phonenumber (ie, at least one digit)

2. Select this menuitem or press Amiga-D.

3. When db starts to dial, lift the hook and wait. As soon as there is a
connection, db will hang up and you can take over.

To interrupt db when dialing. Simply press Amiga-D once again. This should

db 15 / 27

work with most modems

Dialing using the loudspeaker is similar:
1. Select the gadget containing a valid phonenumber (ie, at least one digit)

2. Lift the hook and hold the phone next to the loudspeaker with a suitable
volume setting.

3. Select this menuitem or press Amiga-D.

You may also use ARexx to simplify dialing to just concist of doubleclicking
the number you want to dial. See the example scripts.

Keyboard fans, note this: As an alternative to doubleclicking, you can
use L-Amiga + the hotkey defined for the desired field (marked by an
_underscore in the field name).

Action/Browse...

The browser is a window with a listview that allows you to browse through
the database, seeing fields from more than one record at a time.
To use it, select a field to browse on, and select Browse...

You can also doubleclick on a field to start the browser or use L-Amiga
+ a hotkey if one is defined for that field.
(unless an ARexx command is installed for doubleclicking).

Keyboard fans, note this: As an alternative to doubleclicking, you can
use L-Amiga + the hotkey defined for the desired field (marked by an
_underscore in the field name).

The main window is disabled when using the browser, but the window stays
opened so you can see all fields of the selected record as the browser is
limited to only showing one field from each record at a time.

The following might not be obvious:
· Click once using the mouse to see that record in the main window.
· Doubleclick to select a record AND leave the browser.

(The Return key works as well)
· You can use the arrow keys to browse. Try combining Shift-arrow and

Alt-arrow to see the effect.
· The browser has a ’completion’ function: Just type the string you

look for and the browser will search simultaneously. Use Del to
clear the completion buffer and backspace to delete one character.
Entered text will be shown in the titlebar of the browser.
Use the Tab, Shift-Tab key sequence to jump between multiple matches.

· You can leave the browser by pressing Escape.

Settings/Display warnings:

With this item selected, the user will be warned before a Kill is performed
on a non-empty record.

db 16 / 27

Settings/Sort direction

The user may also choose a backward sort direction.
db will sort the Swedish ÅÄÖ characters correctly.

Settings/Save changes...

This option is currently not available. When it is implemented db will
save the changes in it’s icon as tooltypes. Edit the tooltypes manually!

1.16 arexx

ARexx support

db doesn’t have a full-featured ARexx support as I intend to release a
commercial/shareware product later, but the commands actually implemented
allows you to do things like this:

* Show pictures, texts and play sounds etc from db.

* Ensure that data entered in fields gets formatted as you like (UPPER, Caps..)

* Expand codes to their full names etc (sort of a "filename completion")

To achieve this, ARexx programs can be invoked in two ways:

* When the user doubleclicks a string field or hits LAmiga + key where key
corresponds to the underlined character of a fieldname in a view. This is
called requested invocation and is suitable for showing pictures like above.
The invocation is asynchronous, so the ARexx program will run simultaneously
with db. Use BLOCKINPUT and FREEINPUT to prevent possible problems here.

* When the user hits Esc, Help, Enter or Tab to leave a string field.
or manipulates a checkbox or cycle field.
This is called automatic invocation and can be used to format input in
different ways. Here the invocation is synchronous so don’t write slow
scripts as they will lock out the user during execution.

You can specify ARexxfiles or stringprograms to be executed for each field in
each view, for a whole view or for a whole db project. Currently you have to
edit the RFF lines to control db. Four new RFF tags have been implemented
for this. See

The RFF file format
for more info.

There are readymade ARexx scripts for common uses in this archive.
Try playing with the example project that makes use of the scripts.

The first time db is invoked it will open a port named ’DB.1’. If several
programs are started they will get higher numbers (’DB.2’, ’DB.3’..)

ARexx commands in db:

db 17 / 27

GETFIELD [<field>] -The contents of the current field (or last activated
field) or the specified field (internal fieldname)
will be returned to the Result variable.
For checkbox and cycle fields, their value as an
ordernumber will be returned, not an X/space or a name.

PUTFIELD <var> -The opposite, but you must specify a variable or ’’.
Currently you can’t specify other destinations.
Information is always put in the current string field.

CUT, COPY, PASTE -Like their menu counterparts.

DIAL <number> -Dials the given number using your modem or loudspeaker.

DISPLAYBEEP -Flashes the screen to indicate that something is wrong.

RETRYINPUT -Flashes the screen and reactivates the last gadget used.
Use only in AUTORXSTRING and AUTORXFILE scripts,
otherwize it makes no sense.

OKAY1 <message> -Puts up a requester to inform the user of something.
Nothing is returned from this function. The requester
has one ’Ok’ reply button.

OKAY2 <message> -Puts up a requester asking the user to make some choice.
The requester has two buttons. One ’Ok’ button and one
’Cancel’ button returning 1 and 0 respectively.

BLOCKINPUT -Block user input and puts up a wait pointer to prevent
user from modifying things while the ARexx program runs

FREEINPUT -Frees user input, restoring the old pointer.

QUIT -Quits db unconditionally (doesn’t ask for saving)

(Use Options Results in your scripts to get results)

1.17 rff

Technical info
==============

The RFF file format

db is a general database program, ie it has not a fixed set of fields.
But currently there is no GUI (graphical user interface) for editing the
set of fields you want.

In order to make a custom database using db you therefore have to edit a db
datafile manually. db stores all information other than fieldnames in the
so called RFF lines of a file. (The fieldnames are stored in the first line
of a file as in the ASCII-text standard for database files)

db 18 / 27

db uses an extended version of the standard ASCII database format called RFF.
The difference between the two is that RFF is capable of storing information
on things like layouts, visual fieldnames (as compared to internal fieldnames
in standard ASCII file format), maximal fieldlengths, fieldtypes and more.

However an RFF file can be converted to a plain ASCII database file by just
deleting all lines beginning with @RFF. In the RFF standard all RFF lines
has to be in the beginning of the file, before any data lines, but after
the first line which is the fieldname line, according to the ASCII database
standard.

Note, in the early versions (1.1 & 1.0) db ignored the information specific to
the RFF standard, but wrote files in an RFF compatible manner.

Normally there is one RFF line per
View
in a file, but the first RFF

line describes internal information (as opposed to visual information) like
maximum fieldlenghts so an RFF file consisting of only two RFF lines, has one
view, ie one window displaying just one way to look at the database.

Here is the format of an RFF line:

{<identifier>=<data>[,<identifier>=<data>]...[<tab>]}...<NL>

Example:
NAME=_Firm,OFFS=0,SIZE=37 NAME=_Name,OFFS=1,SIZE=14,NEXT=space

That should read: One or more comma separated ’identifier=data’ items.
Groups of commaseparated identifier=data items may also be tab separated.
Case is not significant in identifier names.
If you need to use a comma or space as data, enclose the data in "quotes"

The idea is that all information that belongs to a view is collected in
a single RFF line, and all information that belongs to a single field in
a view is collected between two tabs just like the field data itself.

IDENTIFIER SCOPE: GLOBAL AREA AND LOCAL AREA
An RFF 1.1 line is divided into two areas, the global area and the local area.
The global area is the area BEFORE the first tab character, and the local area
is the rest of the line. Identifiers put in the global area affects the whole
view (or whole project for internal RFF lines). Identifiers put in the local
area only affects that field. It works like global and local variables in
computer languages like C and Pascal.

Some identifiers may appear in many different areas, even multiple times,
and some may only appear once in one special area. This is indicated next
to the tag specification in the list further below.

To explain how the tags may be used I have included a Status: entry in the
identifier list. Here is an explanation:

global -can appear in the global area of an RFF line.
local -can appear in the local area of an RFF line.
first -must be the first tag.

db 19 / 27

internal -can also appear in an internal RFF line.
internal-only -must only appear in an internal RFF line.
required -must not be omitted

Unknown identifiers are ignored but kept in the program for saving.
This is somewhat like the IFF file way of thinking and allows for future
enhancements without loosing backward compatibility. In v2.4, user is able to
specify fields of checkbox and cycle type, not just string types. Such a file
can be loaded into an old version of db, edited and then reloaded in a modern
version of db without any error codes or lost information.

I also choosed RFF because it is a READABLE format. Readable to both men and
machines of different types. To other database programs an RFF file should
show up like a normal ASCII file with some funny records in the beginning,
not that bad, right?

1.18 identifiers

Identifiers in RFF:

’@’RFF=<version.revision> (Ignore the ’quotes’)
The RFF line identifier itself. Has a version and revision number as it’s
parameter. Must be the first identifier of an RFF line. A new version number
tells an old RFF parser that so big changes has been made to this line that
the entire line should be ignored.
Status: global, first, internal, required

TYPE=<type of data described>
This identifier describes what the current RFF line describes.
The parameters can be any of the following:

internal -Information not concerning any view.
form -This is a form view
list -This is a list view (currently not implemented)

Status: global, internal, required

LNAM=<layoutname>
This is the name of the view to be specified. It will show up in the menus and
in the titlebar of a database window when that view is selected.
(layoutname was the old name for a view)
If you omit LNAM the filename is used as name.
Status: global

TABSIZE=<number of characters>
When using a tabstep to visually separate fields (see NEXT tag below), this tag
sets the distance between two tab positions (measured in characters).
If you omit TABSIZE a default of 6 is used. (db2.1)
Status: global

RXFILE=<filename>

db 20 / 27

Name of ARexx file to execute if user doubleclicks a string field or hits
LAmiga+key, where key corresponds to the underlined character in a fieldname.
(db2.2)
Status: global, local, internal

RXSTRING=<ARexx string program>
Name of ARexx string program to execute if user doubleclicks a string field or
hits LAmiga+key, where key corresponds to the underlined character in a
fieldname. This identifier has priority over RXFILE if both occurs in the same
scope. (db2.2)
Status: global, local, internal

AUTORXFILE=<filename>
Like RXFILE but executes whenever user hits Esc, Help, Enter or Tab to leave
a string field. (db2.2)
Status: global, local, internal

AUTORXSTRING=<ARexx string program>
Like RXSTRING but executes whenever user hits Esc, Help, Enter or Tab to leave
a string field. (db2.2)
Status: global, local, internal

FLEN=<maximum field length>
This identifier describes the maximum allowed fieldlength. It is used to
calculate the buffersize for the stringgadgets. Note: db will never allocate
more memory or disk-space than needed to fit a string, so you may use large
FLEN lengths without consuming space.
If you omit FLEN a default of 200 is used.
Status: local, internal-only

NAME=<visual field name>
This identifier describes not only the fieldname that should be displayed
(could be different from the internal fieldname), but also describes
what hotkey to be used to activate it’s gadget. This is done by placing
an underscore character before the character that is to act as a hotkey.
Example: NAME=E_mail, will make the m key act as a hotkey to activate that
field.
I you omit NAME, the internal fieldname is used (the first line of the file)
Status: local

OFFS=<offset to field in database>
This identifier is very important. It helps db "connect"
a field gadget to the right field in the database as the visual fields
and the internal fields can be in different order. There can even be less
visual fields than internal fields. This is of course only used on multiple
views.
If you omit OFFS, the last OFFS+1 is used.
Status: local

SIZE=<visual fieldsize in characters>

db 21 / 27

This identifier is used to calculate the horizontal size of stringgadgets.
If you omit SIZE, a default of 25 characters is used.
Status: local

NEXT=<visual separator between fields>
This tag controls the position of the fields in the window. Not by x-y
coordinates as in some other programs, but by telling db how to move it’s
invisible "pen" when a field has been drawn.
db starts drawing in the top-left corner.

Here are the currently defined parameters (newline is the default):
space -move slightly to the right before drawing the next gadget.
tab -move a tab-step to the right before drawing the next gadget.
para -move two lines down before drawing the next gadget.

Status: local

CMNT=<"comment string">
This gives us the ability to insert invisible comments in databases.
Any string that contains spaces tabs or commas should be enclosed in "".
Status: global, local, internal

FTYP=<type of field>
Determines the type of the field. These are the currently defined types
(string is the default):

integer -Do a numeric, not an alphabetic sort on this field.
(internal-only, v2.8)

checkbox -displays a checkbox. A 0 or 1 is entered in the database.
cycle -displays a cyclegadget with choices as specified below.

The active choice is stored as an order number starting from
0 in the database.

calc -a calculated field, contains a formula.
(not implemented. Use ARexx instead)

external -this field stores the filename of some external file.
(not implemented. Use ARexx instead)

Status: local, internal

SFMT=<string format>
This identifier gives special formatting of strings like the following
(no formatting is the default):

upper -all capital letters.
(Not implemented. Use ARexx instead)

caps -capital initial letters in words.
(Not implemented. Use ARexx instead)

right -right justified text. (db2.6)
center -centered text. (db2.6)

Status: local

CENT=<cyclegadget entry>
This identifier can occur several times and tells db what choices should appear
in a cyclegadget. If you use FTYP=cycle and don’t specify this one, you will
get an error when the file is loaded.

db 22 / 27

Status: local, multiple

1.19 speed

A note about SpeedRender

Someone might wonder what the (NOSPEEDRENDER) ToolType in db’s tool icon mean,
well here it is:

I’ve tried to program db in such a way that it shall work with any future OS
version. But in order to achieve resonable speeds in redrawing the window I
have adopted a technique called SpeedRender. What SpeedRender does is to copy
all the string gadget border pointers to a private list and then clear the
GadgetRender field pointers in the gadgetstructs. Now Intuition doesn’t have
to redraw the gadgetborders everytime a gadget is updated (happens every time
the user uses the dragbar). Setting this flag turns off SpeedRender.

1.20 history

History of changes
==================

95-08-26 v2.8 NEW FEATURES:

* Sorting now uses the superior Quicksort algorithm
(ACM 271). Alan Wigginton (author of QuickFile)
notified me on the terribly bad sort benchmarks
he got when sorting a large database using db.
It could take hours on an Amiga 500. Now even large
databases should sort in seconds. If you get into
trouble when sorting a large database now, please
set the stack to a higher value.

* db now sorts numbers correctly if you add the
FTYP=integer RFF tag to the internal field
specifcation. Look at the "Music" example!

* The whole database will be sorted on the active
field if you hold down the shift key while activating
the Browser. (A shortcut to sorting, one could say.)
(Some users want to have just the Browser list
sorted and some users want to have the whole database
sorted simpler. This is an intermediate better-than-
nothing solution until I figure out the best way to
do it.)

* Minor speed improvements when entering and exiting the
Browser has been made.

* An updated Dutch catalog has been added. Thanks Edmund.

BUGS FIXED:

db 23 / 27

* New features, new bugs they say...
When using the keys to navigate in the Browser under
OS 2.0 or 2.1 (below v39) the system locks completely.
My first Guru in db :-(This has been fixed.
Thanks to Alan Wigginton for telling me about it.
(My ordinary testers all seem to use v39+ today.)

* Since v2.6 db didn’t sort the Swedish ÅÄÖ characters
correctly. This is fixed.
(Don’t use the LOCALESORT ToolType if you want Swedish
characters sorted correctly as there is a bug in
the Swedish language support in the OS. But DO use
LOCALESORT otherwize as this speeds up sorting and
should make db sort your language specific text
correctly.)

95-08-16 v2.7 NEW FEATURES:

* Added a browser window that consists of a listview
where you can see fields from many records at a time.
The browser is handy when you don’t even remember a
keyword to search for or when you want an overview of
the database. One way to start the browser is by
doubleclicking a field. There is on-line help also.

* Added two new tooltypes to further control the
apperance of fields (HIGHLABEL & NOBORDER).
See

Settings
for more info.

* The following catalogs are updated (please copy them to
your directory): Norwegian, French, Polish, Swedish.
(Text that has changed will show up in English if
you use an old catalog.)

95-07-11 v2.6 NEW FEATURES:

* An Italian, Finnish and Norwegian catalog is now added
to the archive.

* A handy ARexx script to simplify entering of dates is
added to the ARexxdemos drawer.

* Data in fields can now be shown centered and right-
justified (nice for numbers) by setting the RFFtag SFMT
For more information, refer to the section on the RFF
file format. To see right justified fields, look at the
"Music" and "Game reviews" examples.

BUGS FIXED:

* It was not possible to specify (%) to search for empty
fields (note: db uses AmigaDOS search patterns. You can
for example specify ~(%) to search for non-empty fields)
This very old bug was found by Fredrik Jervfors.

* The Norwegian catalog incorrectly used ’S’ as a shorthand
for both ’Save’ and ’Search’.

db 24 / 27

95-02-18 v2.5 NEW FEATURES:

* The sort function can now be set to consider language
specific character sets using the LOCALESORT tooltype.
Note: This might not work in your country if Commodore
hasn’t set up your language’s specific character set.
If set, characters like áàã will typically be sorted
next to the character a. LOCALESORT sorts more than
five times faster than the normal sort when sorting the
250 records-in-size "Music" example on an Amiga 4000
with the cache turned off (!). I hope that speed is
enough for you. Currently I’m using an improved shaker-
sort algorithm. This one works fast if only a few records
are misplaced, but I know that the quick-sort algorithm
wins when a lot of records are misplaced.

* A "fast find" function has been added to the space key.
Upon pressing space, db will enter find mode and clear
all fields automatically.

BUG FIXED:

* The routines to update the database and gadgets have
been rewritten to eliminate possible destruction of the
contents of the current record when jumping between
sort and find modes. This is an old bug.

94-11-20 v2.4 NEW FEATURES:

* db now handles fields of checkbox and cycle type.
as well as string fields. Take a look at the
"Game Reviews" file in the Examples drawer.

* db now also dials numbers using the loudspeaker.
Thanks goes to Andrew Leppard for the dial code.
See

Settings
for more info.

(There are three new ToolTypes to accommodate this)

* Added an ’Output view with names’ menuitem allowing
the database to be outputted with the fieldnames
of the current view preceeding each field.

* Added a MAKEBACKUP ToolType that makes db save a
backup of the database every time a database is saved.

* Added an OKAY1 and OKAY2 ARexx command enabling the
script programmer to put up information and selection
requesters.

* On-line help somewhat improved.

* An Italian and Finnish catalog is now added to the
archive, making db speak 8 languages!
(Where are you French and Spanish guys?)

BUG FIXED:

* Reading the contents of an empty string field from
ARexx returned garbage.

94-09-28 v2.3 NEW FEATURES:

* Several language catalogs added. See
Preface

.

* Clicking the closewindow gadget when in sort- or

db 25 / 27

find mode returns db to normal mode instead of
quitting as suggested by Edmund Vermeulen.
In normal mode this quits db as always.

* Added a HORIZBAR ToolType that places the record-
dragbar horizontally at the bottom of the window.
Suggested by Edmund Vermeulen.

* Added a PUBSCREEN ToolType that opens db on the
specified public screen or Workbench if not found.

* Added an ESCQUIT ToolType that enables the Escape key
to quit db (in normal mode).

* Improved the GETFIELD ARexx command to accept an
optional from-field as argument.

* Added a RETRYINPUT ARexx command that can be used in
AUTORX scripts to enforce correct input. RETRYINPUT
will reactivate the last field entered.

* Added CUT COPY and PASTE Arexx commands.

* Closing large databases is now much faster. Records
are de-allocated in the reverse order from how they
got loaded thus helping exec in it’s job.

* Cut can now also be used in sort and find mode.

BUGS FIXED:

* Pasting in sort mode now works.

* A theoretical problem with trashing of global program-
variables has been fixed (has never happened though)

* Since v2.2: ARexx scripts could be started even in
sort and find mode, that "feature" has been removed.

94-09-05 v2.2b NEW CATALOG:
A German catalog added. Thanks goes to Uwe Roehm.

BUG FIXED:

* In v2.2 Fixed problem where an ARexx program
(asynchronous commands only) could suddenly halt if it
sent a command to db at exactly the same time as some
IDCMP event occured (mouse click etc).

94-09-03 v2.2 NEW FEATUERS:

* ARexx support added. ARexx programs can be invoked
when the user leaves a field, doubleclicks a field
or presses LAmiga+key. Example ARexx scripts are
included that shows text and pictures, plays sound,
dials numbers and adjust fields in different ways.

* Added an edithook routine to make GadTool string-
fields smarter (like in ASL requesters). User may
now perform the following operations IN string-
fields:
- ESC deactivates (without the ugly square)
- Up/down keys (w shift) moves between records
- Menus can be accessed with RAmiga+Key.
- Doubleclicking performs a special action
- Pressing Enter/Shift-Enter cycles around just like

pressing Tab/Shift-Tab

* Tab key now remembers the last active string-field
and re-activates that one if de-activated instead of
activating the first gadget.

* Improved the parsers tolerance to "misplaced" spaces

db 26 / 27

* db will now block input and show a waitpointer when
needed (when loading, sorting..)

BUGS FIXED:

* In v2.1: If the user made a change to a project
by using cut, kill or paste and then quit. db
wouldn’t put up a project-not-saved warning.

* Since v2.0: If the user tried to dial a number before
any field had been selected, db would cause Enforcer
read-hits.

* Before v2.2: The Default Tool field of icons created
by db wouldn’t always get a correct path (to db) if
db was invoked by doubleclicking on a project icon.

No Gurus so far anyway :-)

94-08-20 v2.1 * The return and enter keys can now be used to step
between fields. (Use the NORETURNSTEP ToolType to
only allow the tab key for this like before v2.1)

* Added a TABSIZE tag to the RFF format to simplify
layout work.

* The RFF parser will parse all 1.x files not just
RFF 1.1 files.

* Saves and loades are faster.

94-08-13 v2.0 * Major changes. db is now a general database, not just
a telephone and address database. db now uses the
field- and layout specifications found in the
datafiles (the RFF lines)

* Multiple views implemented.

* Added Amiga-W shortcut for "Save as..." menuitem

* Commaseparated ASCII export implemented (user request)

* When exporting records: filtering of records can be
specified.

* Custom fontname and fontsize can be specified

* db now moves one titlebar down from the top left
corner of the screen when zoomed.

* NOICONS can be specified to suppress icon saving
(user request)

* before 2.0 db didn’t intentionally remember the last
exported filename. This has been changed.

* Before v2.0: If the user made a change to a project
and performed an ASCII export and then quit. db
wouldn’t put up a project-not-saved warning. This has
been corrected.

* Fixed bug where db sometimes sorted records incorrectly
in projects where there were records which had blank
fields which were also part of the sort order.

94-06-04 v1.1 * Added modem-dialing feature.

* db now runs from Shell as well as from Workbench

* Settings can now be made from Shell using Commodore’s
template parsing or from db’s icon using ToolTypes.

* db now moves to the top left corner of the screen
when zoomed.

* Gadget positions and sizes somewhat adjusted.

db 27 / 27

* Selecting Cut won’t incorrectly put up the
delete warning requester.

* minor code changes made.

94-03-04 v1.0 Initial release.

	db
	db - A small and fast database program
	disclaimer
	preface
	introduction
	features
	future
	system
	installing
	settings
	ref
	window
	view
	gadgets
	keys
	menus
	arexx
	rff
	identifiers
	speed
	history

